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Toward bedside computation of myocardial infarction risk using noninvasive
analysis of patients living with coronary artery disease
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A myocardial infarction (MI) is a common occurrence in
coronary artery disease. Inflammatory arterial plaques
that form stenotic lesions are implicated in the disease
progression. If stenosis is caught early, lifestyle changes
including improved diet, exercise, weight management,
and smoking cessation can reduce cardiac events. Surgical
interventions, including coronary artery bypass surgery,
stents, and angioplasty, may however be necessary. It is
critical to identify potentially obstructive, stenotic arteries
before an MI occurs. Inspection of pathological artery
anatomy and conventional coronary angiography (1) are
invasive techniques for this purpose. The pressure change
before and after an arterial lesion can also be measured
using a pressure-sensitive guidewire; this yields low frac-
tional flow reserve (FFR; 2), an indicator of coronary steno-
sis (3). Percutaneous coronary interventions can improve
patient outcomes and reduce subsequent events but have
limited therapeutic utility in severe lesions and distal arterial
vasculature (1). Furthermore, these invasive approaches only
provide coarse metrics such as vessel narrowing, with little
detail about the degree of atherosclerosis, and can be suscep-
tible tomotion artifacts (1).

In a recent issue of the American Journal of Physiology-
Heart and Circulatory Physiology, Sun et al. (4) developed a
noninvasive protocol to predict FFR and stenotic risk from
computational classifiers applied to patient-specific coro-
nary artery data. This entailed 1) developing a large set of
three-dimensional (3-D) idealized geometries informed from
patient-derived coronary artery data, 2) simulations to esti-
mate FFR for idealized geometries, and 3) training classifiers
based on simulated FFR data to index patient-derived coro-
nary artery data (see Fig. 1).

The Sun et al. (4) study leverages published patient vascu-
lar data to predict stenosis in arterial geometries from a non-
invasive technique: computerized tomography angiography.
This technique creates 3-D reconstructions of patient vascu-
lature from X-rays that can identify stenoses, which strongly
associate with cardiovascular disease (2). Computerized to-
mography angiography provides ample data including vessel
length and width that can be used with analytic mathemati-
cal models to reliably predict FFR. One such model, the
Bernoulli equation, quantifies energy losses within a lesion
because of “pressure drops” from convection and constric-
tion at the stenotic region, diffusion, and expansion from the
lesioned vessel to nonstenotic regions (3).

More detailed and potentially more accurate modeling of
blood flow in stenotic vessels relative to analytic models has
been afforded through computational fluid dynamics (CFD)
simulations (2). These numerical approaches solve fluid dy-
namics models of blood pressure and velocities subject to the
aforementioned energy losses (3) but using 3-D models of
patient vasculature. The FFRs from the predicted pressures
offer improved diagnoses relative to using the computerized
tomography angiography data alone (2). A main reason for the
improved performance of CFD models over analytic methods
is that the energy losses are more accurate when realistic arte-
rial geometries are used. Despite their accuracy, CFD is not
appropriate for clinical use, as the simulations are time inten-
sive and require specialized expertise and computing resour-
ces. Sun et al. (4) address this short coming by precomputing
CFD-derived FFR data for idealized patient vessel geometries.
The simulated FFR data were then indexed by easy-to-mea-
sure geometric data using a machine-learning technique.
They approached this by creating novel CFD input geometries
with randomized features including stenotic percentage and
vessel length. The result was a classifier for predicting stenotic
resistance in novel arterial geometries imaged via computer-
ized tomography angiography, but without performing CFD
simulations at a significant computational expense. The classi-
fier was based on a machine learning tool called a neural net-
work that can determine complicated relationships between
FFRs and features derived from computerized tomography an-
giography. With this framework, they demonstrated that 3-D
CFD simulations improve FFR estimates relative to results
from less detailed analytic mathematical models. In addition,
they confirmed that stenotic percentage and minimum area
were among the strongest predictors of FFR.

The neural network approach adopted by Sun et al. (4)
predicted FFR given stenosis length, width, and vessel
length, at a negligible computational cost compared with
CFD modeling. This is another example of machine learn-
ing approaches that have exploded in popularity in recent
years to solve multidimensional and nonparametric prob-
lems given complex data sets. Machine learningmethods are
numerous and diverse in both the algorithms used and the
computational costs in training and validation. The most ro-
bust and commonly used machine learning approaches
include support vector machines and neural networks,
including the backpropagation neural network implemented
by Sun et al. (see Fig. 1). These approaches are more accurate
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compared with simpler approaches, such as decision trees or
statistical classifiers, but require large data sets for model
training.

Sun et al. (4) trained a backpropagation neural network
to reproduce FFRs computed from either CFD or an ana-
lytic mathematical model. A backpropagation neural net-
work consists of hierarchical sets of nodes that are linked
via directional edges as shown in Fig. 1. This resembles the
organization of neurons in the brain that distill massive
sources of data into a physiological response. Neural net-
works are based on a set of input, “hidden” and output
layers that convert an input data set into a predicted out-
put. In short, a vector of data, e.g., features representing a
coronary artery geometry, is assigned to the nodes in the
input layer (Fig. 1, green circles). The values from a set of
input nodes (orange) are individually multiplied by a
weight and added to the node (blue), to which they are
connected in the next layer. This sum is evaluated by an
activation function that sets the output of the node. This
procedure continues for all connected nodes, for each sub-
sequent layer, until the output layer (red) representing the
final result is reached. These networks can have variable
numbers of nodes and layers, as well as activation functions
on each node; the weights in a given network topology are
optimized (trained) to minimize the error between network
predictions from inputs and truth data (FFR). Performance
assessments like the F1 score are typically used to gauge the
precision and recall of the trained classifiers.

Machine learning approaches generally perform best when
they are trained with comprehensive and diverse data sets.
The study, however, was limited to 30 sets of patient-derived
coronary data. The authors confronted this challenge by
building randomly generated, idealized artery geometries
based on ranges of stenotic percentages, lengths, and entrance
diameters presented in the literature. This allowed the
researchers to broaden the parameter space of artery topolo-
gies that is likely spanned by a diverse patient population
beyond their test data. These idealized topologies were used
for analytic and CFD models to predict FFR truth data.
Geometric parameters from the training sets were then used
as inputs for the backpropagation neural network; the nodal
weights were iteratively refined to best reproduce the simu-
lated FFR truth data. The optimized backpropagation neural
networks were then tested against data obtained from patient-
specific computerized tomography angiographies, which
yielded FFR accuracies of 3% compared with direct evaluation
of the analytic mathematical model. More importantly, the
optimized backpropagation neural network enabled FFR pre-
dictions at a negligible cost compared with CFD calculations.
The approach’s high level of accuracy and small computa-
tional cost make a compelling argument for its later use in the
clinic.

The Sun et al. (4) study provided a strong foundation for
machine learning-based assessments of coronary artery ste-
nosis severity that could be further developed. A very action-
able next step would be to assess FFR prediction accuracies
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Figure 1. The framework of Sun et al. (4) for estimating fractional flow reserve (FFR). Idealized coronary artery geometries were created based on param-
eters evaluated in patients, such as the percent stenosis. Computational fluid dynamics modeling estimates FFR for these geometries. In parallel, neural
networks were trained to predict FFR values based on coronary artery parameters. Created with BioRender.com and published with permission.
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according to patient subpopulations, such as women,
African Americans, and smokers, as well as with respect to
common comorbidities. More translational developments
could include curating data from longitudinal studies of
patients who underwent surgical or nonsurgical interven-
tions following computerized tomography angiography
procedures. This may enable machine learning-based pre-
dictions of the best treatment modality for a given patient
and their potential responsiveness to intervention. Other
technical developments might consider alternative formula-
tions of CFDmodels (reviewed in Ref. 5) to improve upon the
approach’s 3% accuracy for FFR predictions, especially given
difficulties in predicting or measuring FFR in distal artery
segments or complex vascular geometries (2). There are
likely additional types of data that could be noninvasively
collected to improve upon FFR calculations, if not patient
outcomes, from blood draws, nonstandard computerized to-
mography angiography measurements (6), and electronic
health records. These data could take the form of informa-
tion on the cellular composition of a lesion, inflammatory
and metabolic markers, arterial compliance (7), patient age,
and sex. These additional features would require expanding
the training set significantly to adequately train the appro-
priatemachine learning classifiers.

Machine learning algorithms, their implementations and
special-purpose hardware, such as graphics processing units,
applied to biomedical data have developed to the stage that
they can be broadly deployed for diverse applications in car-
diac care. From a simulation perspective, we have likely
reached the stage where we no longer ask “could ML be used
to help solve this problem?” to “how should ML be used to
most effectively solve this problem?” Nonetheless, building,
training, and deployment of these models for medical appli-
cations still remains a nontrivial challenge. Technological
limitations include the variable quality of CTA-derived
meshes andmotion artifacts (8) as well as overfitted or under-
determined machine learning models. For one, machine
learning approaches including the backpropagation neural
network are inherently limited by the availability and accu-
racy of data from which they are trained. Curating larger data
sets introduces its own challenges, not the least of which
involves human intervention and biases. Intriguingly, ML can
also suffer from an abundance of data that can obscure trends
that would otherwise be apparent in data sets with fewer pa-
rameters. As a recent and expensive example, IBM spent sev-
eral billion dollars creating and acquiring data procurement
firms for their AI framework Watson. The primary goal was to
develop machine-learning tools to facilitate health care
assessments using training data from millions of patient
records (9). Although their approach was promising and
potentially revolutionary, within just a few years, Watson was
sold off at a loss, based on insufficient data or overly complex
patient records that hindered reliable predictions.

Despite these challenges and cautionary tales, we will con-
tinue to see machine learning and computer simulations
serve increasingly important roles inmedical diagnostics and
treatments. Studies such as Sun et al. (4) are taking the foun-
dational steps to advance this direction, through enriching
existing patient data sets, using detailed computer modeling
to analyze data, and distilling results into computationally
inexpensive classifiers.
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